GAUSSOVA KRIVULJA

Martin Raič

Izzivi poučevanja matematike
UL FMF
21. september 2019

GAUSSOVA KRIVULJA

Carl Friedrich Gauß
 (1777-1855)
 nemški matematik

Vir: Vikipedija

GAUSSOVA KRIVULJA (OSNOVNA)

GAUSSOVA KRIVULJA (TRANSFORMIRANA)

TELESNA VIŠINA 1382 BAVARSKIH VOJAŠKIH OBVEZNIKOV IZ 19. STOLETJA

Vir podatkov (9. 8. 2015): http://www.uni-tuebingen.de/fakultaeten/ wirtschafts-und-sozialwissenschaftliche-fakultaet/faecher/wirtschaftswissenschaft/ lehrstuehle/volkswirtschaftslehre/wirtschaftsgeschichte/data-hub-height.html

OBSEG PRSNEGA KOŠA PRI 5738 ŠKOTSKIH VOJAKIH

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

ZRAČNI TLAK PO SVETU (761286) MERITEV

Vir podatkov (9. 8. 2015): http://cdiac.ornl.gov/epubs/ndp/ndp026c/ndp026c.html

DEM : USD (1980-1987)

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

DEM : USD (1980-1987)

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

DEM : USD (1980-1987) - SPREMEMBE

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

TOC̆KE V SVETOVNEM POKALU PRI ŽENSKEM SMUČANJU (2012/13)

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

MET 30 POŚTENIH KOVANCEV: 1. izvedba

MET 30 POSTENIH KOVANCEV: 1. izvedba

MET 30 POSTENIH KOVANCEV: 2. izvedba

MET 30 POSTENIH KOVANCEV: 3. izvedba

MET 30 POSTENIH KOVANCEV: 4. izvedba

MET 30 POSTENIH KOVANCEV: 5. izvedba

MET 30 POSTENIH KOVANCEV: 6. izvedba

MET 30 POSTENIH KOVANCEV: 7. izvedba

MET 30 POSTENIH KOVANCEV: 8. izvedba

MET 30 POSTENIH KOVANCEV: 9. izvedba

MET 30 POSTENIH KOVANCEV: 10. izvedba

MET 30 POSTENIH KOVANCEV: 30. izvedba

MET 30 POSTTENIH KOVANCEV: 100. izvedba

MET 30 POSTTENIH KOVANCEV: 300. izvedba

MET 30 POSTTENIH KOVANCEV: 10000. izvedba

MET 30 POSTTENIH KOVANCEV: 10000. izvedba

MET 30 POŠTENIH KOVANCEV: VERJETNOSTI

100 METOV POŠTENEGA KOVANCA

100 METOV POŠTENEGA KOVANCA

Abraham de Moivre (1667-1754)
francoski matematik, deloval v Angliji
Vir: Vikipedija

IZPELJAVA ZA POŠTEN KOVANEC (1)

- n-krat vržemo pošten kovanec
- $X:=$ število grbov, ki padejo
- Verjetnost, da pade natanko g grbov, označimo s $\mathbb{P}_{n}(X=k)$.
- $\mathbb{P}_{n}(X=k)=\frac{\binom{n}{k}}{2^{n}}$
- $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}$

IZPELJAVA ZA POŠTEN KOVANEC (2)

Aproksimacija temelji na kvocientu zaporednih verjetnosti:

$$
\begin{aligned}
\frac{\mathbb{P}_{n}(X=k)}{\mathbb{P}_{n}(X=k-1)} & =\frac{\frac{n!}{2^{n k!}(n-k)!}}{\frac{n!}{2^{n}(k-1)!(n-k+1)!}}=\frac{(k-1)!(n-k+1)!}{k!(n-k)!}= \\
& =\frac{n-k+1}{k} .
\end{aligned}
$$

Zaradi enostavnosti vzemimo, da je n sodo število, t. j. $n=2 m$. Naj bo $k=m+d$. Tedaj lahko zgornjo enakost prepišemo v obliki:

$$
\frac{\mathbb{P}_{2 m}(X=m+d)}{\mathbb{P}_{2 m}(X=m+d-1)}=\frac{m-d+1}{m+d}=\frac{1-\frac{d-1}{m}}{1+\frac{d}{m}} .
$$

V naslednjem koraku bomo to aproksimirali za primer, ko je $d \ll m$.

IZPELJAVA ZA POŠTEN KOVANEC (3)

Za majhne x je $1+x \approx e^{x}$:

Vir: Vikipedija

IZPELJAVA ZA POŠTEN KOVANEC (4)

Če d ni prevelik, je torej:

$$
\frac{\mathbb{P}_{2 m}(X=m+d)}{\mathbb{P}_{2 m}(X=m+d-1)}=\frac{m-d+1}{m+d} \approx \frac{e^{-(d-1) / m}}{e^{d / m}}=e^{-(2 d-1) / m}
$$

Z množenjem teh približkov dobimo (za $d \geq 0$):

$$
\frac{\mathbb{P}_{2 m}(X=m+d)}{\mathbb{P}_{2 m}(X=m)} \approx e^{-(1+3+5+\cdots+(2 d-1)) / m}=e^{-d^{2} / m}
$$

Sledi:

$$
\mathbb{P}_{2 m}(X=m+d) \approx \mathbb{P}_{2 m}(X=m) e^{-d^{2} / m}
$$

Zaradi simetrije to velja tudi za negativne d.
Verjetnosti torej sledijo Gaussovi krivulji.

IZPELJAVA ZA POŠTEN KOVANEC (5)

Približek za $\mathbb{P}_{2 m}(X=m)$ dobimo iz dejstva, da je vsota vseh verjetnosti enaka 1:

$$
\sum_{d=-m}^{m} \mathbb{P}_{2 m}(X=m+d)=1
$$

Ker se vse dogaja v območju $d=O(\sqrt{n})$ (sicer je faktor $e^{-d^{2} / m}$ zanemarljiv), smemo aproksimirati:

$$
\sum_{d=-\infty}^{\infty} \mathbb{P}_{2 m}(X=m) e^{-d^{2} / m} \approx 1
$$

IZPELJAVA ZA POŠTEN KOVANEC (6)

Prejšnjo formulo prepišemo v obliki:

$$
\sqrt{m} \mathbb{P}_{2 m}(X=m) \sum_{d=-\infty}^{\infty} \frac{1}{\sqrt{m}} e^{-(d / \sqrt{m})^{2}} \approx 1
$$

Posamezen sumand je enak ploščini pravokotnika s širino $1 / \sqrt{m}$ in višino $e^{-(d / \sqrt{m})^{2}}$, ta pa je približno enaka ploščini pod krivuljo $y=e^{-x^{2}}$ na intervalu okoli d / \sqrt{m} s širino $1 / \sqrt{m}$:

IZPELJAVA ZA POŠTEN KOVANEC (7)

Celotna vsota pa je približno enaka ploščini pod celotno krivuljo $y=e^{-x^{2}}$, za katero je znano, da je enaka $\sqrt{\pi}$:

$$
\sum_{d=-\infty}^{\infty} \frac{1}{\sqrt{m}} e^{-(d / \sqrt{m})^{2}} \approx \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Torej je:

$$
\begin{gathered}
\mathbb{P}_{2 m}(X=m) \approx \frac{1}{\sqrt{m \pi}} \\
\mathbb{P}_{2 m}(X=m+d) \approx \frac{1}{\sqrt{m \pi}} e^{-d^{2} / m}
\end{gathered}
$$

IZPELJAVA ZA POŠTEN KOVANEC (8)

A tudi če je n lih, se da z nekoliko tehnično zahtevnejšo izpeljavo dobiti:

$$
\mathbb{P}_{n}\left(X=\frac{n}{2}+d\right) \approx \sqrt{\frac{2}{n \pi}} e^{-2 d^{2} / n}
$$

oziroma:

$$
\mathbb{P}_{n}(X=k) \approx \sqrt{\frac{2}{n \pi}} e^{-2(k-n / 2)^{2} / n}
$$

Gaussovi krivulji pa sledijo tudi verjetnosti za nepošten kovanec, na katerem grb pade z verjetnostjo $p \in(0,1)$, cifra pa z verjetnostjo $q=1-p$: za $|k-n p| \ll(n p q)^{2 / 3}$ velja Laplaceova lokalna formula:

$$
\mathbb{P}_{n, p}(X=k) \approx \frac{1}{\sqrt{2 \pi n p q}} e^{-2(k-n p)^{2} /(2 n p q)}
$$

Pierre-Simon de Laplace
1749-1827
francoski matematik, astronom, fizik in politik
Vir: Vikipedija

100 METOV NEPOŠTENEGA KOVANCA

$$
n=100, p=0.1
$$

100 METOV NEPOŠTENEGA KOVANCA

$$
n=100, p=0.9
$$

CENTRALNI LIMITNI IZREK

Velja $X=Y_{1}+Y_{2}+\cdots+Y_{n}$, kjer je:

$$
Y_{j}= \begin{cases}1 & ; \text { pri } j \text {-tem metu pade grb, } \\ 0 & ; \text { pri } j \text {-tem metu pade cifra. }\end{cases}
$$

Gaussovi krivulji pa pod razmeroma milimi pogoji sledi tudi porazdelitev vsote veliko splošnejših neodvisnih slučajnih spremenljivk: porazdelitve posameznih seštevancev ne smejo biti pregrde in nobeden ne sme preveč izstopati. Precizni formulaciji tega dejstva pravimo centralni limitni izrek.

Gaussovi krivulji torej sledi porazdelitev slučajne količine, ki nastane kot rezultanta veliko majhnih neodvisnih vplivov, ki se med seboj seštevajo.

NORMALNA (GAUSSOVA) PORAZDELITEV

- $\mu=\mathbb{E}(X)$ (pričakovana vrednost ali matematično upanje)
- $\sigma^{2}=\operatorname{var}(X)=D(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]$
(varianca ali disperzija)

Paul Pierre Lévy (1886-1971)

francoski matematik židovskega rodu

Vir: Vikipedija

2 META POŠTENE KOCKE

30 METOV POŠTENE KOCKE

GRDA PORAZDELITEV

VSOTA 10 GRDIH PORAZDELITEV

VSOTA 10 GRDIH PORAZDELITEV

VSOTA 50 GRDIH PORAZDELITEV

VSOTA 100 GRDIH PORAZDELITEV

VSOTA 500 GRDIH PORAZDELITEV

DOHODKI 43886 DRUŽIN V KIBERGRADU

Vir podatkov: J. Rice: Mathematical Statistics and Data Analysis, Duxbury, 2007

1000 POVPREC̆IJ PO 20000 DOHODKOV

TOC̆KE V SVETOVNEM POKALU PRI ŽENSKEM SMUČANJU (2012/13)

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

LOGARITEM TOČK

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

STANDARDNA NORMALNA PORAZDELITEV

$\mathrm{N}(0,1)$

PRIMERJALNI KVANTILNI (Q-Q) GRAFIKON: IDEJA 1

n različnih podatkov razdeli realno os na $n+1$ delov:
Primer: 3, 22, 7, -20, 11, -10, 15, 18, 25

PRIMERJALNI KVANTILNI (Q-Q) GRAFIKON:

 IDEJA 2Realno os pa lahko razdelimo tudi glede na ploščine pod Gaussovo krivuljo:

PRIMERJALNI KVANTILNI (Q-Q) GRAFIKON: PRIMER 1

Podatki: 3, 22, 7, -20, 11, -10, 15, 18, 25

PRIMERJALNI KVANTILNI (Q-Q) GRAFIKON: PRIMER 2

Podatki: 5, 20, 5, -20, 10, -10, 10, 10, 25

OBSEG PRSNEGA KOŠA PRI 5738 ŠKOTSKIH VOJAKIH

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

OBSEG PRSNEGA KOŠA PRI 5738 ŠKOTSKIH VOJAKIH

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

TELESNA VIŠINA 1382 BAVARSKIH VOJAŠKIH OBVEZNIKOV IZ 19. STOLETJA

Vir podatkov (9. 8. 2015): http://www.uni-tuebingen.de/fakultaeten/ wirtschafts-und-sozialwissenschaftliche-fakultaet/faecher/wirtschaftswissenschaft/ lehrstuehle/volkswirtschaftslehre/wirtschaftsgeschichte/data-hub-height.html

TELESNA VIŠINA 1382 BAVARSKIH VOJAŠKIH OBVEZNIKOV IZ 19. STOLETJA

Vir podatkov (9. 8. 2015): http://www.uni-tuebingen.de/fakultaeten/
wirtschafts-und-sozialwissenschaftliche-fakultaet/faecher/wirtschaftswissenschaft/ lehrstuehle/volkswirtschaftslehre/wirtschaftsgeschichte/data-hub-height.html

DEM : USD (1980-1987) - SPREMEMBE

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

DEM : USD (1980-1987) - SPREMEMBE

Vir podatkov (9. 8. 2015): https://vincentarelbundock.github.io/Rdatasets/datasets.html

TOC̆KE V SVETOVNEM POKALU PRI ŽENSKEM SMUČANJU (2012/13)

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

TOC̆KE V SVETOVNEM POKALU PRI ŽENSKEM SMUČANJU (2012/13)

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

LOGARITEM TOČK

Vir podatkov (27. 3. 2013):
http://www.fis-ski.com/uk/disciplines/alpine-skiing/cupstandings.html

LOGARITEM TOČK

DOHODKI 43886 DRUŽIN V KIBERGRADU

Vir podatkov: J. Rice: Mathematical Statistics and Data Analysis, Duxbury, 2007

DOHODKI 43886 DRUŽIN V KIBERGRADU

Vir podatkov: J. Rice: Mathematical Statistics and Data Analysis, Duxbury, 2007

1000 POVPREC̆IJ PO 20000 DOHODKOV

1000 POVPREC̆IJ PO 20000 DOHODKOV

