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Vektorji v R? in R3
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Linearne preslikave v R?
Preslikava A : R? — R? je aditivna, ¢e velja

A(3)

A(d+ b) = A(3) + A(b).

Preslikava A : R> — R? je homogena, ¢e velja

a-3 Ao 2

A(a-a8) =a-A(3).
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Linearne preslikave
Preslikava A : R" — R je aditivna, Ce velja
A(3+ b) = A3 + Ab.

Preslikava A : R" — R je homogena, Ce velja

A(ad) = aAa.

Preslikava A : R” — R je linearna, Ce je aditivna in
homogena.

Za vsako linearno preslikavo A : R" — R™ velja A(6) =0.
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Linearne preslikave v R?

Primeri linearnih preslikav A : R? — R?:
@ pravokotna projekcija na premico (skozi izhodisce),
@ posSevna projekcija na premico (skozi izhodisce),
@ zrcaljenje Cez premico (skozi izhodisce),
@ razteg v smeri vektorja,
@ rotacija okrog izhodisc¢a,
@ strig,
@ kombinacije zgornjih.

Translacija v smeri vektorja ni linearna preslikava.
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Linearne preslikave v R3

Primeri linearnih preslikav A : R® — R3:
@ projekcija na premico,
projekcija na ravnino,

@ zrcaljenje Cez premico,
zrcaljenje ez ravnino,
razteg v smeri vektorja,
rotacija okrog premice,
strig,

kombinacije zgornijih.
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Linearne preslikave v R?

Vsaka linearna preslikava A : R?> — R? je oblike
{x] [ax + ﬁy}
A = .
y X + 6y

Linearna preslikava A : R? — R? je natanko dolotena s $tevili
ai 6! ’Ya 5

Linearni preslikavi A : R? — R? priredimo matriko A = [?; ?]
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Primer: pravokotna projekcija na os x
A R? - R?:
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Primer: posevna projekcija na os x

A R? - R?:
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Primer: zrcaljenje ¢ez os x
A:R? - R?:

>
[ —
< X
——
I
|
\<><
| S
>
Il
|
o_L
| o
——
1

Damjana Kokol Bukovsek Grafi komutativnosti matrik



Primer: razteg v smeri osi x za faktor g

A R? - R?:
y
3 3 3
AlX Ex] A:[E 0] 3
= A=l o) =
y y
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Primer: rotacija za kot 3

A R? - R2:
y
x| [~y [0 -1 Aa
sG] A
y y
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Primer: strig

A : R?2 — R?:
y
W % B VR Z
y y 0 1 Ad
y y
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Primer: identiteta
l: R?2 - R?;
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Linearne preslikave iz R” v R”
Vsaka linearna preslikava A : R" — R™ je oblike

X1 01Xy + Q42Xo + - -+ + Q1pXn

X2 Q21 X1 + qpoXp + -+ + QapXp
Al | = ;

Xn am X1 + ameXo + -+ + ampXp

Linearna preslikava A : R” — R™ je natanko doloCena s Stevili
aj, =1,2,...m,j=1,2,...n.

Linearni preslikavi A : R" — R™ priredimo matriko

a1 Q42 0 Qg

Q21 Qo -+ Q2p
A=

Om Cm2 ' Omn
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Matrike

Matrika velikosti m x n je tabela mn Stevil

ayy a2 ... an

dp1 dz2 ... dop
A= . .

am am2 ... amn

Sestavljena je iz m vrstic in n stolpcev, posamezna Stevila se
imenujejo elementi.

KrajSe zapiSemo
A = [alj]mxn

Z matrikami lahko racunamo.
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Vsota matrik

Matriki iste velikosti lahko sestejemo. Vsoto dobimo tako, da
sestejemo istolezne elemente.

[@jj]lmxn + [Dj]lmxn = [@j + bjj]lmxn.

Primer:
2 3 1 N -1 3 2 B 1 6 3
-2 0 -2 1 2 -2 | -1 2 —4 |-

Vsoti matrik ustreza vsota linearnih preslikav.
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Produkt s sklarjem

Matriko lahko pomnozimo s skalarjem (Stevilom). Produkt s
skalarjem dobimo tako, da s skalarjem pomnozimo vse
elemente matrike.

ala@jlmxn = [a@j]mxn-

5. [ 2 3 1 ]_[6 9 3
20 2| |60 6]

Produktu matrike s sklarjem ustreza produktu linearne
preslikave s skalarjem.

Primer:
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Lastnosti seStevanja in produkta s skalarjem

e A+B=B+A

@ (A+B)+C=A+(B+0)
e A+0=A

@0-A=0

@ A+(-A)=0

o (—1)-A=-A

@ a(A+B)=aA+aB

@ (a+p)A=aA+ (A

Damjana Kokol Bukovsek Grafi komutativnosti matrik



Produkt matrik
Matriki
A= [aij]mxm B = [bij]nxp
lahko zmnozimo. Njun produkt je matrika

C = [Cjlmxp;

kjer je

n
Cj = anbyj + @by + -+ @inbn = ) Aicby.
k=1

@ Da lahko zmnozimo dve matriki, mora imeti prvi faktor
toliko stolpcev, kot ima drugi vrstic.

@ Elementi produkta so skalarni produkti vrstic prvega
faktorja in stolpcev drugega faktorja.

@ Produkt ima toliko vrstic, kot ima prvi faktor vrstic, in toliko
stolpcev, kot ima drugi faktor stolpcev.

@ Produktu matrik ustreza komponiranje linearnih preslikav.
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Primer
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Primer: komponiranje linearnih preslikav

A : R? — RR? projekcija na os x
B : R? — R? rotacija za kot %

y y y
B }

I>
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Primer: komponiranje linearnih preslikav

A : R? — RR? projekcija na os x
B : R? — R? rotacija za kot %

y y y

lm
I

AB : R2 - R?
10 0 —1 0 —1
a=lo o 8-[7 0] 2|0 ]
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Identicna matrika

ldenticna matrika je kvadratna matrika, ki ima po diagonali
enke, drugod pa nicle.

10 ... 0
01 ...0
I=1 . . :
00 1

Identi¢na matrika ustreza identiteti kot linearni preslikavi.

Skalarna matrika je kvadratna matrika, ki ima po diagonali vse
vrednsti enake, drugod pa nicle:

A=al
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Lastnosti mnozenja matrik
Mnozenje matrik ni komutativno, v splosnem je

AB # BA.

Veljajo lastnosti:
@ (AB)C = A(BC)
@ ABB+C)=AB+ AC
@ (A+B)C=AC+BC
0 AI=IA=A
@ a(AB) = (aA)B = A(aB)

Mnozica vseh kvadratnin matrik

je algebra.
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Centralizator

Ce za kvadratni matriki A, B € M,(R) velia AB = BA, re¢emo,
da matriki komutirata.

Mnozica vseh matrik, ki komutirajo z matriko A € M,(R)
¢ (A) = {Be Mu(R); AB = BA}
se imenuje centralizator matrike A.

Primeri:
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Center

Velja

Mnozica vseh matrik, ki komutirajo z vsemi matrikami
Ae MuR)

Z(Mp(R)) = {Be Mp(R); ¢ (B) = Mp(R)}
se imenuje center algebre M,(R).

Velja
Z(Mp(R)) = {B=al,aeR}.
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Graf komutativnosti matrik

Graf komutativniosti algebre Mp(R) je graf I'(Mj(R)), katerega
vozlid€a so vse necentralne matrike v M,(R)

V(F(Mn(R))) = Mp(R)\Z(Mn(R)),

dve matriki A, Be V(I'(Mp(R))) pa sta povezani, ¢e A # Bin
komutirata, AB = BA.

Vsaka neskalarna matrika je v I'(Mp(R)) povezana z vsemi

matrikami iz €' (A), razen s skalarnimi matrikami in sama s
sabo.
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Algebra, generirana z matriko
Ce je Ae Mp(R) matrika in p polinom

p(x) = amx™ + - -+ + axx® + a;x + ay,
lahko izraGunamo

p(A) = anA™ + - + & A + a1 A + al.
Primer:

A:[? 8], p(x) =3x*—7x+4,  p(A) = [_47 2}

Mnozico
R[A] = {p(A); p polinom}

imenujemo algebra, generirana z matriko A.
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Algebra, generirana z matriko

Primer:

A:{? 8], R[A]z{[: 30];ao,a1eR}

Za vsako matriko A € Mp(R) velja R[A] < €'(A).

Primer: ) )
00

A=|i o] EMAI=¢”)

A=|d ol RAI=€A
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Algebra, generirana z matriko

10 0
A=|o 0 0
000
ao0o
R[A]:{ 0 b o ;a,beR}
00 b
a 0o
%(A):{ 0 b c ;a,b,c,d,eeR}
0 d

e
Za vsako matriko A je algebra R[A] komutativna,
mnozica ¢'(A) pa ne nujno.

Primer:
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Izrek Cayley-Hamilton

Izrek (Cayley-Hamilton)

b

Za vsako matriko A = [a
c d

] e M>(R) velja

A% = (a+ d)A— (ad — be)l.
Posledica

Za vsako neskalarno matriko A€ Ma(R) velja

R[A] = {aA+ Bl,a, f € R}.
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Graf komutativnosti (M3 (R))

Trditev
Za vsako neskalarno matriko A e Ma(R) velja

C(A) = {aA+ pl;a, f e R}.

Ce sta A, B e My(R) neskalarni matriki in velja AB = BA,
potem je ¢ (A) = € (B).

Trditev

Graf komutativnosti ' (M2 (R)) je nepovezan. Vsaka njegova
komponenta je klika, katere vozlis¢a so matrike iz mnoZice
¢ (A)\Z(M2(R)) za neko neskalarno matriko A.
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Razdalja v grafu in premer grafa

Naj bosta A, B dve vozlisCi v grafu I'. Razdalja med Ain B je
dolzina najkrajSe poti med njima. Ce je

A=Xg~Xi~..~Xc=B

najkraj$a pot med Ain B, je d(A, B) = k. Ce pot med Ain B ne
obstaja, je d(A, B) = «.

Ce je v grafu komutatovnosti AB = BA, je d(A, B) = 1.
Premer grafa I' je najveCja razdalja d(A, B), ki je doseZena v

med dvema vozlis¢ema v V(I'). Ce graf I' ni povezan, je njegov
premer neskoncen.
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Razdalja v I (Mo(R)) in T(M;3(R))

CestaA Be M5 (R) neskalarni matriki, velja
@ Ceje AB=BAjed(AB) =1,
@ Ceje AB +# BA, je d(A,B) = .

Ce je n = 3, to ne velja ved:

010 0 0 1 0 0O
A=([(0 0O 1|~|0O O Of[~|O0O 1 O
0 0O 0 0O 0 0O

ampak

Zatoje d(A,B) = 2.
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Premer grafa I'(M,(R))

Velja d(A, C) = 4.
Izrek (Miguel, 2013)

Ce je n = 3, potem je graf T (M,(R)) povezan in njegov premer
je enak 4.
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Drugi obsegi
Namesto realnih Stevil so lahko elemeti matrik tudi kaj drugega,
na primer racionalna Stevila Q, kompleksna Stevila C, ...

Mnozico, v kateri lahno seStevamo, odStevamo, mnozimo in
delimo, ter veljajo enake lastnosti kot pri realnih Stevili,
imenujemo obseg.

Izrek (Akbari, Mohammadian, Radjavi, Raja, 2006)

Naj bo F poljuben obseg. Ce je graf T (M,(F)) povezan, je
njegov premer najvec 6.

Trditev (Dolzan, KB, Kuzma, Oblak, 2016)

Naj bo F poljuben obseg. Ce je graf I'(My(F)) povezan, je
njegov premer enak 4.
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Obseg 7Z»

Naj bo Z, = {0, 1} mnozica ostankov pri deljenju z 2.
V Z> lahko seStevamo

0+0=0, 0+1=1+0=1, 1+1=0,
odstevamo
in mnozimo

0.0=0, 0-1=1.0=0, 1-1=1.

Mnozica Z, je obseg.
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Graf komutativnosti ['(M»(Z,))

Trditev
Za vsako neskalarno matriko A € Mx(Z) velja

C(A) = {aA+ Bl a, B € Zp}.

Ce sta A, B € My(Z) neskalarni matriki in velja AB = BA,
potem je ¢ (A) = € (B).

Trditev

Graf komutativnosti T (M2z(Zz)) je nepovezan. Vsaka njegova
komponenta je klika, katere vozlis¢a so matrike iz mnoZice
€ (A\Z(Ma2(Z2)) za neko neskalarno matriko A.
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Graf komutativnosti I'(M3(Z>))
Algebra A e M»(Zy) ima 16 elementov, njen center Z(M3(Zy))
pa dva elementa, 0 in /. Zato ima graf I'(M2(Z>)) 14 vozlisc.

Ce je Ae My (Zy) neskalarmna matrika, je
“(A) = (A A+ 1,0, 1}.

V grafu I'(M2(Zy)) ima vsaka matrika A samo enega soseda,
A+ I. Graf '(M32(Zy)) ima 7 komponent.

[0 0] [0 1 1 0] [0 1] [0 O] [0 1] [0 1]
|1 0] |0 Of |0 O] [O 1] |1 1| |1 1] |1 O]
L R T D R B
10 1 1 00 1 1 10 1 1 1 1
11 0 1] |0 1 |0 0] |1 Of |1 0] [1 1

Damjana Kokol Bukovsek Grafi komutativnosti matrik



Graf komutativnosti (M ,(Z,))
Trditev

Graf ' (Mp(Z»)) je povezan natanko takrat, ko n ni prastevilo.

Izrek (Dolzan, KB, Kuzma, Oblak, 2016)

Ce n ni niti prastevilo niti kvadrat prastevila, potem je premer
grafa T (Mn(Zz)) najvec 5.
Ce je n sodo Stevilo, potem je premer grafa I (Mn(Z2)) enak 4.

Trditev (Dolzan, KB, Kuzma, 2016)
Premer grafa T (Mis(Zy)) je 5.

Premer grafa I'(M2(Z2)) ostaja odprto vprasanje.
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Obseg Q

Trditev
Graf T (Mp(Q)) je nepovezan za vsak n.

Izrek (Dolzan, KB, Kuzma, 2017)

Za vsako prastevilo p > 7 prastevilo obstajata matriki
A, B e M,(Q), za kateri je d(A, B) = 6.
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Obseg Q

010
Primer: Najbo A = [0 0 1]
2 00
Velja
a b c
%(A)z{ [20 a b];a,b,ceﬂ?}.
2b 2c a

Ce je B e M3(Q) neskalarna matrika in AB = BA, je
¢ (B) = ¢ (A), zato je € (A)\Z(M3(Q)) komponenta v
(Ms3(Q)) in graf I'(M3(Q)) je nepovezan.

0 V2 1
CejeB= [ 2 0 eﬁ] e M3(R) n € (A), je
22 2 0
CK(A) < ‘K(B), zato € (A)\Z(M3(R)) ni komponenta v
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Hvalal
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