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September 1999 (z dodatkom iz septembra 2022)

Povzetek

Poi²£emo ²tevilo elementov v simetri£ni grupi Sn brez negibnih to£k
in izpeljemo sklep o asimptoti£nem obna²anju. Temu sledi izra£un
matemati£nega upanja ²tevila negibnih to£k dane permutacije.

Notacija Naj bo n pozitivno celo ²tevilo. Z bn ozna£imo ²tevilo per-
mutacij v Sn brez negibnih to£k. Omenimo, da se v angle²£ini tak²ne
permutacije imenujejo �derangements�, v£asih �dearrangements�.

Naj bo tudi sn = |Sn| = n! in zn = sn − bn ²tevilo permutacij z
vsaj eno negibno to£ko.

Izrek 1. Za vsak n ∈ N velja

bn = n!
n∑

k=0

(−1)k

k!
.

Dokaz Opazimo, da je
(
n
k

)
bn−k ²tevilo permutacij n elementov z

natanko k negibnimi to£kami. Res, k elementov izmed n lahko izber-
emo na natanko

(
n
k

)
na£inov; za izbrano k-terico na preostalih mestih

ne smemo imeti nobene negibne to£ke, zato dobimo faktor bn−k. Prav
tako ne obstaja permutacija z natanko n − 1 negibnimi to£kami. To
nam da prvo rekurzijsko zvezo

zn =

(
n

1

)
bn−1 +

(
n

2

)
bn−2 + ...+

(
n

n− 2

)
b2 + 1 . (1)

Z uporabo (1) lahko zdaj izra£unamo prvih nekaj bn.
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Slika 1:

n zn bn sn
1 1 0 1
2 1 1 2
3 4 2 6
4 15 9 24
5 76 44 120
6 455 265 720

Na podlagi Slike 1 sklepamo ²e na drugo rekurzijsko zvezo, ki jo
bomo dokazali kasneje:

zn+1 = (n+ 1)zn + (−1)n . (2)

De�nirajmo an = zn/sn. Tedaj iz (2) sledi

an+1 =
zn+1

sn+1
=

(n+ 1)zn
sn+1

+
(−1)n

sn+1
= an +

(−1)n

sn+1
.

Ozna£imo (−1)n

sn+1
s cn+1. Tedaj velja

a2 = a1 + c2,
a3 = a2 + c3 = a1 + c2 + c3
a4 = a3 + c4 = a1 + c2 + c3 + c4
...
an = a1 +

∑n
j=2 cj .

Ker je c0 + c1 = 0 in a1 = z1/s1 = 1, dobimo

an = 1 +

n∑
j=0

cj .

Zato velja

zn = sn + sn

n∑
j=0

cj ,

od koder sledi iskana zveza

bn = sn − zn = −sn

n∑
j=0

cj = −n!

n∑
j=0

(−1)j−1

j!
= n!

n∑
j=0

(−1)j

j!
.
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Ostane nam ²e dokaz (2). V ta namen uporabimo indukcijo po n.

� Veljavnost formule za n = 1, 2, 3, 4 lahko enostavno preverimo s
pomo£jo Slike 1.

� Sedaj predpostavimo, da za k = 2, . . . , n velja

zk = k zk−1 + (−1)k−1.

Radi bi dobili zn+1 = (n+ 1)zn + (−1)n .
Iz predpostavke sledi

bk = sk − zk = k sk−1 − k zk−1 − (−1)k−1 = k bk−1 − (−1)k−1,

torej
bk = k bk−1 + (−1)k (3)

za k = 2, . . . , n. Enakost (1) da

zn+1 =

(
n+ 1

1

)
bn +

(
n+ 1

2

)
bn−1 + ...+

(
n+ 1

n− 1

)
b2 + 1 .

Nadalje iz (3) dobimo

zn+1 =

(
n+ 1

1

)
(n bn−1 + (−1)n) +

(
n+ 1

2

)
((n− 1)bn−2 + (−1)n−1) + ...

...+

(
n+ 1

n− 2

)
(3 b2 + (−1)3) +

(
n+ 1

n− 1

)
b2 + 1 .

Z uporabo zveze
(
n+1
k

)
(n+ 1− k) = (n+ 1)

(
n
k

)
sledi

zn+1 = (n+ 1)

(
n

1

)
bn−1 +

(
n+ 1

1

)
(−1)n

+ (n+ 1)

(
n

2

)
bn−2 +

(
n+ 1

2

)
(−1)n−1

+ . . .

+ (n+ 1)

(
n

n− 2

)
b2 +

(
n+ 1

n− 2

)
(−1)3 +

(
n+ 1

n− 1

)
b2 + 1 .

�e zdruºimo vse £lene, ki vsebujejo faktor (n+1), nato ponovno
uporabimo (1) in na koncu ²e upo²tevamo, da je b2 = 1 = (−1)2,
dobimo

zn+1 = (n+ 1)(zn − 1) +

n−1∑
j=1

(
n+ 1

j

)
(−1)n+1−j + 1 .
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Binomska formula da
m∑
j=0

(
m

j

)
(−1)j = (1− 1)m = 0, (4)

zato

zn+1 = (n+ 1)(zn − 1) +

[
0−

(
n+ 1

0

)
(−1)n+1 −

(
n+ 1

n

)
(−1)1

]
= (n+ 1)zn − n− 1 + (−1)n + (n+ 1) ,

od koder sledi (2), kot smo ºeleli dokazati. □

Posledica 1. Ob zgornjih oznakah velja

lim
n→∞

bn
sn

= lim
n→∞

bn
n!

=
1

e
.

To pomeni, da £e se nam raztrese bombonjera s tiso£ bomboni, ki
jih nato naklju£no zloºimo nazaj, je verjetnost, da niti eden ne bo sédel
na svoje prvotno mesto, enaka pribliºno 37%.

Opazimo tudi, da se za n = 6 deleº permutacij brez �ksnih to£k,
ki je glede na zadnjo vrstico Slike 1 enak 265/720 oz. 53/144, od
limitne vrednosti za n → ∞ (torej 1/e) razlikuje zelo malo, in sicer
za pribliºno 0, 000176. To si lahko razloºimo s tem, da so bn/sn delne
vsote konvergentne alternirajo£e vrste, in sicer

∞∑
k=0

(−1)k

k!
, (5)

katere £leni izredno hitro konvergirajo proti ni£. Namre£, po Leibni-
zovem kriteriju vemo, da lahko ostanek tak²ne vrste (to je, razliko od
delne vsote do polne) ocenimo navzgor z absolutno vrednostjo prvega
izpu²£enega £lena, torej za ck ↘ 0 velja∣∣∣∣∣

∞∑
k=n+1

(−1)kck

∣∣∣∣∣ ⩽ cn+1.

Ker pa je v na²em primeru ck = 1/k! in ker k! zelo hitro nara²£a
proti ∞, sledi, da ck zelo hitro pada proti 0, zato se ºe zgodnje delne
vsote vrste (5), ki so enake bn/sn, zelo malo razlikujejo od polne vsote.
Eksplicitno, ∣∣∣∣1e − bn

sn

∣∣∣∣ ⩽ 1

(n+ 1)!
.
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Dodatek: matemati£no upanje ²tevila negibnih
to£k (dodano septembra 2022)

Naj dn,k ozna£uje verjetnost, da ima dana permutacija v Sn natanko
k negibnih to£k. V prej²njem razdelku smo opazili, da velja

dn,k =
1

n!

(
n

k

)
bn−k,

kar se po Izreku 1 poenostavi v

dn,k =
1

k!

n−k∑
j=0

(−1)j

j!
. (6)

Naj boDn slu£ajna spremenljivka z vrednostmi na mnoºici {0, 1, . . . , n},
za katero velja P (Dn = k) = dn,k. Za m ∈ N njen m-ti moment de�ni-
ramo kot matemati£no upanje slu£ajne spremenljivke Dm

n , torej

E(Dm
n ) =

n∑
k=0

kmdn,k .

Za m = 1 je to torej (uteºeno) povpre£je ²tevila negibnih to£k med
vsemi permutacijami iz Sn.

Analiti£no si lahko Dn predstavimo tako, da najprej interval [0, 1]
razdelimo na disjunktne podintervale I0, I1, . . . , In, pri £emer ima Ik
dolºino dn,k. Nato Dn de�niramo kot funkcijo [0, 1] → {0, 1, . . . , n},
ki interval Ik celega slika v k. Tedaj je

E(Dm
n ) =

∫
[0,1]

Dm
n (x) dx =

n∑
k=0

kmdn,k.

Na² cilj je izra£unati ²tevila E(Dm
n ). Proti koncu tega razdelka

bomo videli, da sovpadajo s tako imenovanimi Bellovimi ²tevili.
Za za£etek obravnavajmo primera m = 1, 2.

Izrek 2. Za vsak n ∈ N velja

� E(Dn) = 1;

� E(D2
n) = 2, £e je n ⩾ 2.

Zato je varianca slu£ajne spremenljivke Dn enaka E(D2
n)−E(Dn)

2 = 1
za n ⩾ 2.
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Dokaz Velja

E(Dn) =
n∑

k=0

kdn,k =
n∑

k=1

k · 1

k!

n−k∑
j=0

(−1)j

j!
=

n−1∑
l=0

1

l!

n−1−l∑
j=0

(−1)j

j!︸ ︷︷ ︸
=dn−1,l

= 1,

preprosto zato, ker je vsota vseh verjetnosti diskretne slu£ajne spre-
menljivke enaka E(1) = 1.

Kar zadeva E(D2
n), dobimo

E(D2
n) =

n∑
k=0

k2dn,k

=
n∑

k=1

k2 · 1

k!

n−k∑
j=0

(−1)j

j!

=
n∑

k=1

[k(k − 1) + k] · 1

k!

n−k∑
j=0

(−1)j

j!

=
n∑

k=2

1

(k − 2)!

n−k∑
j=0

(−1)j

j!
+

n∑
k=1

1

(k − 1)!

n−k∑
j=0

(−1)j

j!

=
n−2∑
l=0

1

l!

n−2−l∑
j=0

(−1)j

j!
+

n−1∑
l=0

1

l!

n−1−l∑
j=0

(−1)j

j!

=

n−2∑
l=0

dn−2,l +

n−1∑
l=0

dn−1,l

= 2.

Stirlingova ²tevila druge vrste

Dokaz Izreka 2 lahko raz²irimo tako, da izra£unamo vi²je momente
slu£ajne spremenljivke Dn. Analiza zgornjega dokaza v primeru D2

n

nakazuje, da je klju£no izraziti potence k, k2, k3, . . . kot linearne kom-
binacije polinomov

k

k(k − 1)

k(k − 1)(k − 2)

. . .
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Na primer,
k2 = k(k − 1) + k

k3 = k(k − 1)(k − 2) + 3k(k − 1) + k

. . .

To lahko storimo bolj sistemati£no, kar nas bo naposled pripeljalo do
Stirlingovih ²tevil druge vrste.

Najprej se moramo spomniti pojma Pochhammerjevega simbola.
Za a ∈ R in n ∈ N de�niramo

(a)n =
Γ(a+ n)

Γ(a)
= a (a+ 1) · . . . · (a+ n− 1).

Ti simboli so priro£en zapis za zgornje polinome. Res,

(k)1 = k

(k)2 = k(k − 1)

(k)3 = k(k − 1)(k − 2)

. . .

Naj bodo cn,k ∈ R koe�cienti, dolo£eni z zahtevo

xn =

n∑
k=1

cn,k(x)k ∀x ∈ R,∀n ∈ N. (7)

Utemeljimo obstoj takih koe�cientov. Veljati mora cn,n = 1, da se
ujema koe�cient (=1) pri potenci xn. Nato izberemo cn,n−1 tako, da
se ujema koe�cient (=0) pri xn−1. Postopek nadaljujemo induktivno
in na ta na£in vidimo, da obstaja natanko ena druºina koe�cientov
cn,1, . . . , cn,n, ki zado²£a (7).

Na² naslednji cilj je izra£unati cn,k. Velja

xn+1 =

n+1∑
k=1

cn+1,k(x)k. (8)
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Po drugi strani pa

xn+1 = xn · x

=
n∑

k=1

cn,kx(x)k

=
n∑

k=1

cn,k(x− k + k)(x)k

=

n∑
k=1

cn,k(x)k+1 + k

n∑
k=1

cn,k(x)k

=
n+1∑
l=2

cn,l−1(x)l + k
n∑

k=1

cn,k(x)k

=
n∑

k=2

(cn,k−1 + kcn,k)(x)k + cn,1(x)1 + cn,n(x)n+1.

Ker so koe�cienti v (8) enoli£no dolo£eni, dobimo

cn+1,1 = cn,1

cn+1,n+1 = cn,n

cn+1,k = cn,k−1 + kcn,k za k = 2, . . . , n.

Ker je o£itno c1,1 = 1, iz prvih dveh ena£b sledi cn,1 = cn,n = 1 za
vsak n ∈ N. Tako pridemo do naslednjih rekurzijskih zvez, ki v celoti
dolo£ajo koe�ciente cn,k:

cn,1 = cn,n = 1

cn+1,k = cn,k−1 + kcn,k za k = 2, . . . , n.
(9)

V kombinatoriki je znano dejstvo (ki ga bomo kmalu dokazali), da so
²tevila cn,k natan£no Stirlingova ²tevila druge vrste. Ta se obi£ajno
ozna£ujejo z zavitimi oklepaji in imajo naslednjo eksplicitno formulo:

{n

k

}
=

1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn.

Obratno lahko z neposrednim izra£unom lahko preverimo, da zgornja
formula zado²£a rekurzijskim zvezam in za£etnim pogojem iz (9). S
tem dobimo identiteto cn,k =

{
n
k

}
.

Za dokaz najprej potrebujemo naslednjo lemo.
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Lema 1. Naj bo k ∈ N in m ∈ {0, 1, . . . , k}. Tedaj velja

k∑
j=1

(−1)j
(
k

j

)
jm =


−1 ; £e je m = 0
0 ; £e je 1 ⩽ m ⩽ k − 1

(−1)kk! ; £e je m = k

Dokaz. Uporabljali bomo naslednjo preprosto identiteto, veljavno za
cela ²tevila b ⩽ a:

b

(
a+ 1

b

)
= (a+ 1)

[(
a+ 1

b

)
−
(
a

b

)]
. (10)

Za m ⩽ k ozna£imo

γk,m :=

k∑
j=1

(−1)j
(
k

j

)
jm.

Prva identiteta, γk,0 = −1, je ravno (4). Prav tako neposredno
preverimo, da je γ1,1 = −1.

Nadalje iz (10) dobimo

γk+1,m+1 =
k+1∑
j=1

(−1)j
(
k + 1

j

)
jm+1

= (k + 1)

 k∑
j=1

(−1)j
[(

k + 1

j

)
−
(
k

j

)]
jm + (−1)k+1(k + 1)m


= (k + 1)

k+1∑
j=1

(−1)j
(
k + 1

j

)
jm −

k∑
j=1

(−1)j
(
k

j

)
jm

 .

Od tod sledi
γk+1,m+1 = (k + 1)(γk+1,m − γk,m).

Skupaj z za£etnima pogojema γk,0 = γ1,1 = −1 to z indukcijo
dokaºe lemo.

Izrek 3. Za vsak n ∈ N in k ∈ {1, . . . , n} velja

cn,k =
{n

k

}
=

1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn.
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Dokaz. Kot je bilo napovedano, pokaºemo, da Stirlingova ²tevila druge
vrste zado²£ajo rekurzijskim zvezam (9).

O£itno je
{
n
1

}
= 1. Poseben primer m = k Leme 1 pomeni ravno{

n
n

}
= 1. Nazadnje dobimo{
n

k − 1

}
+ k

{n

k

}
=

1

(k − 1)!

k−1∑
j=1

(−1)k−1−j

(
k − 1

j

)
jn + k

1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn

=
1

(k − 1)!

k−1∑
j=1

(−1)k−jjn
[(

k

j

)
−

(
k − 1

j

)]
︸ ︷︷ ︸

= j
k (

k
j), po (10)

+
kn

(k − 1)!

=
1

k!

k∑
j=1

(−1)k−jjn+1

(
k

j

)

=

{
n+ 1

k

}
.

Bellova ²tevila in vi²ji momenti Dn

Identiteto/de�nicijo (7) ter Izrek 3 povzamemo v

xn =

n∑
k=1

{n

k

}
(x)k ∀x ∈ R, ∀n ∈ N. (11)

To uporabimo za izra£un momentov E(Dm
n ) za m ∈ {1, . . . , n}. V ta

namen zdruºimo (6) in (11), kot sledi:
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E(Dm
n ) =

n∑
k=0

kmdn,k

=

n∑
k=1

m∑
l=1

{m

l

}
(k)l ·

1

k!

n−k∑
j=0

(−1)j

j!

=

m∑
l=1

{m

l

} n∑
k=l

1

(k − l)!

n−k∑
j=0

(−1)j

j!

=

m∑
l=1

{m

l

} n−l∑
p=0

1

p!

n−l−p∑
j=0

(−1)j

j!

=

m∑
l=1

{m

l

} n−l∑
p=0

dn−l,p

=
m∑
l=1

{m

l

}
.

Ta ²tevila so znana kot Bellova ²tevila in jih ozna£ujemo z Bm. Tako
dobimo

Bm =
m∑
l=1

{m

l

}
=

m∑
l=1

1

l!

l∑
j=1

(−1)l−j

(
l

j

)
jm =

m∑
l=1

l∑
j=1

(−1)l−jjm

j!(l − j)!
.

Izraz lahko ²e druga£e zapi²emo kot

Bm =
m∑
j=1

jm

j!

m∑
l=j

(−1)l−j

(l − j)!
=

m∑
j=1

jm

j!

m−j∑
k=0

(−1)k

k!
,

oziroma

Bm =

m−1∑
k=0

(−1)k

k!

m−k∑
j=1

jm

j!
.

Zanimivo je omeniti, da obstaja ²e en na£in predstavitve Bm, ki je
zelo podoben zgornjemu. Znan je kot formula Dobi«skega in se glasi

Bm =

∞−1∑
k=0

(−1)k

k!

∞−k∑
j=1

jm

j!
, (12)

kar se seveda poenostavi v

Bm =
1

e

∞∑
j=1

jm

j!
. (13)
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Zanimivo bi bilo izpeljati (13) iz (12). Potrebno je pokazati, da je
vsota po komplementu enaka ni£.

Za ponazoritev hitrosti rasti Bm na²tejmo prvih nekaj vrednosti:

m Bm

1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4140

Pri²li smo do naslednjega rezultata.

Izrek 4. Za vsak n ∈ N in m ⩽ n velja

E(Dm
n ) = Bm.

V posebnem je E(Dm
n ) naravno ²tevilo, neodvisno od n.
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