Opazka o permutacijah brez fiksnih tock

Oliver Dragicevié¢

September 1999 (z dodatkom iz septembra 2022)

Povzetek

Poiscemo &tevilo elementov v simetri¢ni grupi S, brez negibnih tock
in izpeljemo sklep o asimptoticnem obnasanju. Temu sledi izra¢un
matemati¢nega upanja Stevila negibnih tock dane permutacije.

Notacija Naj bo n pozitivno celo stevilo. Z b, oznacimo Stevilo per-
mutacij v S, brez negibnih toc¢k. Omenimo, da se v angles¢ini taksne
permutacije imenujejo “derangements”, v¢asih “dearrangements”.

Naj bo tudi s, = |Sp| = n!in 2z, = s, — b, Stevilo permutacij z
vsaj eno negibno tocko.

Izrek 1. Za vsak n € N velja

k=

o

Dokaz Opazimo, da je (Z)bn—k Stevilo permutacij n elementov z
natanko k negibnimi tockami. Res, k elementov izmed n lahko izber-
emo na natanko (Z) nacinov; za izbrano k-terico na preostalih mestih
ne smemo imeti nobene negibne tocke, zato dobimo faktor b,_. Prav
tako ne obstaja permutacija z natanko n — 1 negibnimi to¢kami. To

nam da prvo rekurzijsko zvezo

2 = <§L> b1 + <Z>bn2 o+ <nﬁ2> by + 1. (1)

Z uporabo (1) lahko zdaj izra¢unamo prvih nekaj by,.



Slika 1:

n| z, | by | sn
1] 1 0 1
21 1 1 2
3| 4 2 6
41151 9 | 24
5176 | 44 | 120
6 | 455 | 265 | 720

Na podlagi Slike 1 sklepamo e na drugo rekurzijsko zvezo, ki jo
bomo dokazali kasneje:

2ur1 = (n+ Dz + (—1)". (2)

Definirajmo a,, = z,/sn. Tedaj iz (2) sledi

z n+1)z —-1)" —-1)"
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Sn+1 Sn+1 Sn+1 Sn+1
Oznacimo (S_ni): S cnt1. Tedaj velja

az = a1 + ¢z,
a3 =ao+c3=a;+cy+c3
a4 =a3+c4s=a1+cr+c3+cy

n
anp =a1+ 37 5¢5.

Ker je ¢cg+ ¢ =01in a1 = z1/s1 = 1, dobimo

n
ap =1+ Z cj .
Jj=0
Zato velja
n
Zn :3n+ancj,
=0

od koder sledi iskana zveza

n n ; n ;
—1)i-1 —1)J
=0

J=0 ’ J=0



Ostane nam Se dokaz (2). V ta namen uporabimo indukcijo po n.

e Veljavnost formule za n = 1,2, 3,4 lahko enostavno preverimo s
pomodjo Slike 1.

e Sedaj predpostavimo, da za kK = 2,...,n velja
zr =kzp_1+ (—1)k_1.

Radi bi dobili 2,41 = (n+ 1)z, + (—1)".
Iz predpostavke sledi

b =sp— 25 = ksp1 —kzp—y — (—1)" 1 =kby_y — (=),

torej
by = kbg_1 + (—=1)" (3)

za k=2,...,n. Enakost (1) da

n+1 n+1 n+1
ntl = by, bp— b 1.
Zn+1 ( 1 ) +( 9 ) 1+ +(n_1>2+

Nadalje iz (3) dobimo

= (") bt 0 (M) (= Do 1
(1) (T L
Z uporabo zveze ("k J(n+1—k)=(n+1)(}) sledi

i1 = (n+1) (?)bn 1+< )(—1)”
)

1
+(n+1) <Z b 2+<n+ >(—1)“—1

+(n+1><nﬁ2>ba+ (Zf;>(—1)3+ <Zt1>bg+l.

Ce zdruzimo vse Elene, ki vsebujejo faktor (n+ 1), nato ponovno
uporabimo (1) in na koncu e upoitevamo, da je by = 1 = (—1)2,
dobimo

n+1
Zny1 = (n+ n—1) —i—Z( > (1)1 41,



Binomska formula da

> (M =a-vm=o @

=0 v
zato
1 1
AR CEE R R (i I VR (i I
=n+Dz,—n—1+(-1)"+(n+1),
od koder sledi (2), kot smo zeleli dokazati. O

Posledica 1. Ob zgornjih oznakah velja

. by : 1
lim — = lim — =-.
n—00 Sy n—oo n! €
To pomeni, da ¢e se nam raztrese bombonjera s tiso¢ bomboni, ki
jih nato naklju¢no zlozimo nazaj, je verjetnost, da niti eden ne bo sédel

na svoje prvotno mesto, enaka priblizno 37%.

Opazimo tudi, da se za n = 6 deleZ permutacij brez fiksnih tock,
ki je glede na zadnjo vrstico Slike 1 enak 265/720 oz. 53/144, od
limitne vrednosti za n — oo (torej 1/e) razlikuje zelo malo, in sicer
za priblizno 0,000176. To si lahko razlozimo s tem, da so b, /s, delne
vsote konvergentne alternirajoce vrste, in sicer

S @

k=0

katere ¢leni izredno hitro konvergirajo proti ni¢. Namre¢, po Leibni-
zovem kriteriju vemo, da lahko ostanek taksne vrste (to je, razliko od
delne vsote do polne) ocenimo navzgor z absolutno vrednostjo prvega
izpusCenega clena, torej za ¢ \, 0 velja

oo
k
Z (_1) ci| < Cpt1-
k=n+1
Ker pa je v nasem primeru ¢, = 1/k! in ker k! zelo hitro narasta

proti oo, sledi, da ¢y zelo hitro pada proti 0, zato se Ze zgodnje delne
vsote vrste (5), ki so enake by, /sy, zelo malo razlikujejo od polne vsote.
Eksplicitno,

1 by

e Sp

1
< —.
(n+1)!




Dodatek: matemati¢no upanje Stevila negibnih
toc¢k (dodano septembra 2022)

Naj d,, j, oznacuje verjetnost, da ima dana permutacija v S, natanko
k negibnih tock. V prejsnjem razdelku smo opazili, da velja

1 /n
dn,k - ﬁ <I€> bnflw

kar se po Izreku 1 poenostavi v

n—~k j
di= 5 3 0 )

<.
=)
<

Naj bo D,, slu¢ajna spremenljivka z vrednostmi na mnozici {0, 1,...,n},
za katero velja P(D,, = k) = d,, . Za m € N njen m-ti moment defini-
ramo kot matematicno upanje slucajne spremenljivke D", torej

n

E(D) = kdpy,.
k=0

Za m =1 je to torej (utezeno) povpreje Stevila negibnih toc¢k med
vsemi permutacijami iz S,.

Analiti¢no si lahko D,, predstavimo tako, da najprej interval [0, 1]
razdelimo na disjunktne podintervale Iy, I, ..., I, pri C¢emer ima I
dolzino d,, ;. Nato D,, definiramo kot funkcijo [0,1] — {0,1,...,n},
ki interval Iy, celega slika v k. Tedaj je

E(DM) = D (z)de = kMdns.
[0.1] k=0

Nasg cilj je izra¢unati §tevila E(D]"). Proti koncu tega razdelka
bomo videli, da sovpadajo s tako imenovanimi Bellovims stevili.

Za zatetek obravnavajmo primera m = 1, 2.
Izrek 2. Za vsak n € N velja

e E(D,)=1;

e E(D2)=2, ¢ejen>2.

Zato je varianca slucajne spremenljivke Dy, enaka E(D2)—E(D,)* =1
zan > 2.



Dokaz Velja

= Zn: kdy . = Zn: k-
k=0 k=1
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:dnfl,l

preprosto zato, ker je vsota vseh verjetnosti diskretne slucajne spre-
menljivke enaka F(1) = 1.
Kar zadeva E(D?), dobimo

n n—k ;
1 (=1
DD
| il
P k! = 4!
n n—=k
1 —1)7
S k=144 L5 EY
k! 4!
k=1 7=0
n n—k ; n n—k
1 1)’ 1 —1)’
:Z(k_g)v ( v) + (k_l)vz( 'l)
k=2 " =0 J k=1 J J:
n—2 , n—2-—1 n—1 _, n—1-1 ;
1 —1)J 1 (—1)7
=27 I DS 7l
=0 7=0 =0 7=0
n—2
= n 2,1 +Zdn 1,1
=
= 2 O

Stirlingova $tevila druge vrste

Dokaz Izreka 2 lahko razSirimo tako, da izrac¢unamo vi§je momente
slu¢ajne spremenljivke D,. Analiza zgornjega dokaza v primeru D2
nakazuje, da je klju¢no izraziti potence k, k2, k>, ... kot linearne kom-
binacije polinomov



Na primer,
k2 =k(k—1)+k

k3 =k(k—1)(k—2)+3k(k—1)+k

To lahko storimo bolj sistemati¢no, kar nas bo naposled pripeljalo do
Stirlingovih Stevil druge vrste.

Najprej se moramo spomniti pojma Pochhammerjevega simbola.
Za a € R in n € N definiramo

I'(a+n)

= ")

=a(a+1)-...-(a+n—1).

Ti simboli so prirocen zapis za zgornje polinome. Res,
(k)1 =k

(k)2 = k(k

(k)3 = k(k

)

~1
~1)(k - 2)

Naj bodo ¢, 1 € R koeficienti, doloCeni z zahtevo

2" =" cn (@) Vz € R,¥n € N. (7)
k=1

Utemeljimo obstoj takih koeficientov. Veljati mora ¢,, = 1, da se
ujema koeficient (=1) pri potenci z™. Nato izberemo ¢, 1 tako, da
se ujema koeficient (=0) pri 2"~!. Postopek nadaljujemo induktivno
in na ta nadin vidimo, da obstaja natanko ena druZina koeficientov
Cn,ls- -, Cnn, ki zadoSCa (7).

Nas naslednji cilj je izracunati c, . Velja

n+1

2= k(@) (8)

k=1



Po drugi strani pa
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(Cn,kfl + kcn,k)(x)k + le(l')l + Cn,n<x)n+1-
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Ker so koeficienti v (8) enoli¢no dolo¢eni, dobimo

Cn4+1,1 = Cn,1
Cn+l,n+1 = Cnn
Cnt1k = Cnk—1 + kCp ko zak=2,...,n.

Ker je ocitno ¢1;1 = 1, iz prvih dveh enacb sledi ¢, 1 = ¢, = 1 za
vsak n € N. Tako pridemo do naslednjih rekurzijskih zvez, ki v celoti
doloc¢ajo koeficiente ¢, ;:

Cn,1l = Cnpn = 1

(9)

Cntlk = Cnk—1 T ke zak=2,...,n.

V kombinatoriki je znano dejstvo (ki ga bomo kmalu dokazali), da so
Stevila ¢, natancno Stirlingova $tevila druge vrste. Ta se obicajno
oznacujejo z zavitimi oklepaji in imajo naslednjo eksplicitno formulo:

n 1 b _i(k\ .,
{k}:k!;(_l)k ](a)”‘

Obratno lahko z neposrednim izra¢unom lahko preverimo, da zgornja
formula zados¢a rekurzijskim zvezam in zacetnim pogojem iz (9). S
tem dobimo identiteto ¢, = {Z}

Za dokaz najprej potrebujemo naslednjo lemo.



Lema 1. Naj bo k € Ninm € {0,1,...,k}. Tedaj velja

k ke -1 ; Cejem=0
(—1)J<‘>J””= 0 cejel<m<k—1
j=1 J (

—1)*E! 5 Cejem =k

Dokaz. Uporabljali bomo naslednjo preprosto identiteto, veljavno za
cela Stevila b < a:

CE)-enl(1)-GF o

Za m < k oznaimo

(K
= 307 (8o
— J
J
Prva identiteta, v, 0 = —1, je ravno (4). Prav tako neposredno
preverimo, da je y11 = —1.
Nadalje iz (10) dobimo
k+1
(kE+1Y .
Vht1m+1 = Z(—l)]< , )JmH
— J
J
& T(k+1 k
=y [ e [ (T - (8)] o et
= j j
[k+1 k
(E+1Y . AW
= 1) | oy (= S ()
=1 J j=1 J
0Od tod sledi
Yer1,ma1 = (B + 1) (Yer1,m — Yem)-
Skupaj z zacetnima pogojema 7o = 1,1 = —1 to z indukcijo
dokaze lemo. O

Izrek 3. Za vsakn € Nin k € {1,...,n} velja

= (=)



Dokaz. Kot je bilo napovedano, pokazemo, da Stirlingova Stevila druge
vrste zados¢ajo rekurzijskim zvezam (9).

O¢itno je {711} = 1. Poseben primer m = k Leme 1 pomeni ravno
{"} = 1. Nazadnje dobimo

{ki1}+k{z}

Bellova $tevila in vi§ji momenti D,

Identiteto/definicijo (7) ter Izrek 3 povzamemo v

n
x":Z{Z}(x)k Vz € R,¥n € N. (11)
k=1
To uporabimo za izra¢un momentov E(D)") za m € {1,...,n}. V ta

namen zdruzimo (6) in (11), kot sledi:
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k=0
B n o m m in—k (_1)]
_k:”;{ l }(k)l B

m m n 1 n—k (_1)]
:;{ l }kzl(k—zy i

= = =0

m n—l 1 n—Il—p (_1)]
:;{7}219' 2

= p=0 7=0

m n—l
S

=1 p=0

Ta Stevila so znana kot Bellova §tevila in jih oznacujemo z B,,. Tako
dobimo

m m l m o Nl—jm
By =3 {7} = a0 () - XX G

Izraz lahko Se drugace zapiSemo kot

i i
j=1 J: = j=1 J: k=0
oziroma
m—1 k. m—k .
B - (-1 j"
m = k! i
k=0 Tog=1 J

Zanimivo je omeniti, da obstaja Se en nadin predstavitve B,,, ki je
zelo podoben zgornjemu. Znan je kot formula Dobiriskega in se glasi

co—1 (_1)k co—k .

_ J
k=0 7j=1
kar se seveda poenostavi v
1 o= j™
By = - ; R (13)



Zanimivo bi bilo izpeljati (13) iz (12). Potrebno je pokazati, da je
vsota po komplementu enaka, nic.
Za ponazoritev hitrosti rasti B, nastejmo prvih nekaj vrednosti:

m | By
11

212

3195

4 |15

5 | 52

6 | 203

7| 877

8 | 4140

Prisli smo do naslednjega rezultata.

Izrek 4. Za vsakn € N in m < n velja

E(D™) = By,

n

V posebnem je E(D]") naravno Stevilo, neodvisno od n.
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